almediah.fr
» » Life Insurance Theory: Actuarial Perspectives

Download Life Insurance Theory: Actuarial Perspectives eBook

by F. Etienne De Vylder

Download Life Insurance Theory: Actuarial Perspectives eBook
ISBN:
0792399951
Author:
F. Etienne De Vylder
Category:
Business & Finance
Language:
English
Publisher:
Springer; 1997 edition (August 31, 1997)
Pages:
184 pages
EPUB book:
1634 kb
FB2 book:
1217 kb
DJVU:
1775 kb
Other formats
mobi rtf lit mbr
Rating:
4.3
Votes:
657


Actuarial Perspectives. Authors: De Vylder, F. Etienne.

Actuarial Perspectives. eBook 118,99 €. price for Russian Federation (gross).

Life Insurance Theory book. See a Problem? We’d love your help.

Etienne De Vylder (auth.

2 Life Insurance Theory Actuarial Perspectives by F. Etienne De Vylder SPRINGER-SCIENCE+BUSINESS MEDIA, .

Автор: F. Etienne De Vylder Название: Life Insurance Theory Издательство: Springer . Описание: The book gives a comprehensive overview of modern non-life actuarial science. It starts with a verbal description (.

Описание: The book gives a comprehensive overview of modern non-life actuarial science. without using mathematical formulae) of the main actuarial problems to be solved in non-life practice.

F. Etienne De Vylder. ISBN: 0792399951; Издательство: Kluwer Academic Publishers. The stochastic model, introduced by Professor De Vylder more than twenty years ago and now widely adopted, is used throughout the monograph.

This book is different from all other books on Life Insurance by at least one of the following characteristics 1-4. 1. The treatment of life insurances at three different levels: time-capital, present value and price level. We call time-capital any distribution of a capital over time: (*) is the time-capital with amounts Cl, ~, ... , C at moments Tl, T , ..• , T resp. N 2 N For instance, let (x) be a life at instant 0 with future lifetime X. Then the whole oO oO life insurance A is the time-capital (I,X). The whole life annuity ä is the x x time-capital (1,0) + (1,1) + (1,2) + ... + (I,'X), where 'X is the integer part ofX. The present value at 0 of time-capital (*) is the random variable T1 T TN Cl V + ~ v , + ... + CNV . (**) In particular, the present value ofA 00 and ä 00 is x x 0 0 2 A = ~ and ä = 1 + v + v + ... + v'X resp. x x The price (or premium) of a time-capital is the expectation of its present value. In particular, the price ofA 00 and äx 00 is x 2 A = E(~) and ä = E(I + v + v + ... + v'X) resp.