Cauchy integral equalities and applications

Author:
Boo Rim Choe

Journal:
Trans. Amer. Math. Soc. **315** (1989), 337-352

MSC:
Primary 32A35

DOI:
https://doi.org/10.1090/S0002-9947-1989-0935531-9

MathSciNet review:
935531

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study bounded holomorphic functions $\pi$ on the unit ball ${B_n}$ of ${\mathbb {C}^n}$ satisfying the following so-called Cauchy integral equalities: \[ \begin {array}{*{20}{c}} {C[{\pi ^{m + 1}}\bar \pi ] = {\gamma _m}{\pi ^m}} & {(m = 0,1,2, \ldots )} \\ \end {array} \] for some sequence ${\gamma _m}$ depending on $\pi$. Among the applications are the Ahern-Rudin problem concerning the composition property of holomorphic functions on ${B_n}$, a projection theorem about the orthogonal projection of ${H^2}({B_n})$ onto the closed subspace generated by holomorphic polynomials in $\pi$, and some new information about the inner functions. In particular, it is shown that if we interpret ${\text {BMOA}}({B_n})$ as the dual of ${H^1}({B_n})$, then the map $g \to g \circ \pi$ is a linear isometry of ${\text {BMOA}}({B_1})$ into ${\text {BMOA}}({B_n})$ for every inner function $\pi$ on ${B_n}$ such that $\pi (0) = 0$.

- Patrick Ahern,
*On the behavior near a torus of functions holomorphic in the ball*, Pacific J. Math.**107**(1983), no. 2, 267–278. MR**705748** - J. M. Anderson, J. Clunie, and Ch. Pommerenke,
*On Bloch functions and normal functions*, J. Reine Angew. Math.**270**(1974), 12–37. MR**361090** - Patrick Ahern and Walter Rudin,
*Bloch functions, BMO, and boundary zeros*, Indiana Univ. Math. J.**36**(1987), no. 1, 131–148. MR**876995**, DOI https://doi.org/10.1512/iumj.1987.36.36007
---, - K. G. Binmore,
*Analytic functions with Hadamard gaps*, Bull. London Math. Soc.**1**(1969), 211–217. MR**244473**, DOI https://doi.org/10.1112/blms/1.2.211
B. R. Choe, - Boo Rim Choe,
*Weights induced by homogeneous polynomials*, Pacific J. Math.**139**(1989), no. 2, 225–240. MR**1011210** - R. R. Coifman, R. Rochberg, and Guido Weiss,
*Factorization theorems for Hardy spaces in several variables*, Ann. of Math. (2)**103**(1976), no. 3, 611–635. MR**412721**, DOI https://doi.org/10.2307/1970954 - John B. Garnett,
*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971** - Clinton Kolaski,
*Projections onto spaces of holomorphic functions*, Indiana Univ. Math. J.**29**(1980), no. 5, 769–775. MR**589441**, DOI https://doi.org/10.1512/iumj.1980.29.29055 - Wade Ramey and Paula Russo,
*Behavior of functions in BMOA and VMOA near a $(2n-2)$-dimensional submanifold*, Indiana Univ. Math. J.**37**(1988), no. 1, 73–81. MR**942095**, DOI https://doi.org/10.1512/iumj.1988.37.37003 - Walter Rudin,
*Composition with inner functions*, Complex Variables Theory Appl.**4**(1984), no. 1, 7–19. MR**770982**, DOI https://doi.org/10.1080/17476938408814087
---, - Paula A. Russo,
*Boundary behavior of ${\rm BMO}(B_n)$*, Trans. Amer. Math. Soc.**292**(1985), no. 2, 733–740. MR**808751**, DOI https://doi.org/10.1090/S0002-9947-1985-0808751-8
D. Ullrich,

*Paley-type gap theorems for*${H^p}$-

*functions on the ball*, Indiana Univ. Math. J. (to appear).

*Composition with bounded holomorphic functions on the ball*, Ph.D. thesis, Univ. of Wisconsin-Madison, 1988.

*Function theory in the unit ball of*${\mathbb {C}^n}$, Springer-Verlag, Berlin, Heidelberg and New York, 1980.

*Radial divergence in*$BMOA$, preprint.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
32A35

Retrieve articles in all journals with MSC: 32A35

Additional Information

Keywords:
Cauchy Integral Equalities,
the Ahern-Rudin problem,
projection

Article copyright:
© Copyright 1989
American Mathematical Society